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It is well known that a near minimax polynomial approximation p is obtained by
truncating the Chebyshev series of a function f after n + 1 terms. It is shown that if
I' E C1n + II[ -I, I], then II f - pll may be expressed in terms of fin + II in the same
manner as the error of minimax approximation. The result is extended to other
types of near minimax approximation. (' 1987 Academic Press. Inc.

1. INTRODUCTION

Bernstein [1] has shown that if p E~ is the minimax approximation on
[-1,1] tojEC<'l+I)[ -1,1], then the error satisfies

(1.1 )

where ~ E (-1, 1) and 11'11 denotes the Chebyshev norm. Phillips [5] has
shown that a similar result holds for other choices of norm and Holland,
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Phillips, and Taylor [3,4] have extended Bernstein's proof to other
approximations.

It is well known that a near minimax approximation is given by the
interpolating polynomial p E .~, constructed on the zeros of Tnt l' the
Chebyshev polynomial of degree n + I. The error / - p again satisfies (I. I )
(except ~ may have a different value).

Recently Phillips and Taylor [6] have shown that (I. I) holds if p E.o/" is
chosen so that / - p equioscillates on the point set consisting of the n + 2
extrema of TI/ + l' This is another case of near minimax approximation and
is recommended as a means of starting the Remez exchange algorithm for
finding the minimax approximation.

A more important type of near minimax approximation is obtained by
truncating the Chebyshev series for / after n + I terms. If

the truncated series is

k=O, I: ... , (1.2)

1/

.I'n(x) = I' ak Tk(x),
k~()

(I.3 )

where I' denotes summation with the first term halved. We will prove that
(1.1) holds with p = .1'1/'

In Section 3 we give an alternative proof to that in [6] for the case of
equioscillation on the extrema of TI/ + 1 and in Section 4 we show that (I. I)
holds if p is obtained by "economising" the interpolating polynomial of
degree n + I constructed on the zeros of TI/ + 2'

If /(n + 1) is approximately constant over the interval, the error formula
(I. I) suggests that there will not be a substantial difference in the accuracy
of these various types of approximation and confirms the near minimax
property.

2. TRUNCATED CHEBYSHEV SERIES

The usual proof that the truncated Chebyshev series (1.3) is a near
minimax approximation to / E C[ ~ I, I] uses bounds on the Lebesgue
constant (operator norm) for .1'1/' (See, e.g., Elliott [2] and Rivlin [7].) An
intuitive argument that .1'1/ is near minimax is based on the observation that
if the Chebyshev series converges rapidly then the error

/(X)-.I'I/(X)= I akTk(x)
k~n+l

(2.1 )
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is dominated by an + 1 Tn + 1(X) which equioscillates n + 2 times on [ - 1, 1].
We will adopt a different approach to the problem and will assume that
fEc(n+l l [ -1,1]. We start by deriving an expression for the ak which
shows that if ak = 0 for k ~ n + 2 then (1.1) holds with p = Sn'

LEMMA 2.1. Iff E Ck[ -1, 1], the Chebyshev coefficients defined by (1.2)
satisfy

(2.2)

(2.3 )

Proof Use Rodrigue's formula

T(t) = (- l)k fi(l - t
2
)1/2 !...-- (1 _ t2)k _ 1/2

k 2kT(k+1J2) dtk

and partial integration noting that for 1 :( j:( k - 1,

COROLLARY. IffECk[-I, 1] then

(2.4 )

where ~ E ( - I, 1).

Proof Since

(2.5)

(2.4) follows from (2.2) on using the mean value theorem for integrals.
Note that iffE c(n+ 1)[ -1,1] then

where ~ E ( - 1, 1).
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THEOREM 2.1. ffIEc(n+ 1)[ -I, IJ then

1
Ilf-snil = 2/l(n + 1)! Ipn+ 1)(01, (2.6)

where ~ E ( - 1, I).

Proof Substitute (1.2) into (1.3) and interchange the order of the sum
mation and integration to give

From the orthogonality property of Chebyshev polynomials it is clear that
for the function f = 1 we must have .1'" = 1 and thus

r/l(x) := f(x) - .I'/l(x)

=~ f (I-t 2) 1/2(f(X)-f(t)) ±' Tk(t) Tk(x)dt.
It --I k~O

Using the Christoffel-Darboux formula to replace the sum, we have

rn(x) = ~ fl (I - t 2 ) -1/2 (f(t) - f(X))
It 1 t-x

X (T/l(t) T/l+ ,(x)- T n +I(t) T)x)) dt. (2.7)
Observe that

and thus

f(t)-f(x) = J'I f'((t-x) u+x) du,
t-x 0

(2.8)

r/l(x)=!f (CI:/l(u) T/l+I(x)-Cl:,,+I(u) T/l(x))du, (2.9)
o

where CI:/l(u), Cl:1I+ 1(u) are the Chebyshev coefficients for the function
Fu(t) :=f'((t - x) u + x);

2 JICI:)u)=- (1~t2) 1/2['((t-X)u+x)T/t)dt,
It_ I

j= n, n + I. (2.10)

Now F~:')(t)=u"r(/l+-I)((t-x)u+x)and thus by Lemma 2.1,

r/l(x) = I f1U/lf j(/l+I)((t-x)u+x)(I-t 2 )" 1/2

2/lfinn+l/2) 01

x (T/l+ I(X)- tT/l(x)) dt duo
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Since un is positive in (0, 1) we may apply the mean value theorem to the
integral with respect to u so that for some J.1 E (0, 1),

and thus

Irn(x)1 :::; M n+ I f' (1- t2)n-I/2
2n fi(n+l)r(n+l/2) I

X ITn+l(x)-tTn(xl[ dt, (2.11)

where

Mn+,=llftn+')II= max If(n+')(x)l.
l-:::;;x:S;1

Define the function hn by

(2.12)

h,,(t) represents the straight line joining (-I,ITn+,(x)+Tn(x)l) and
(1, IT,,+ I(X)- T,,(x)l) and thus

hn(t):;::' ITn+ I(X) - tTn(x)1 for -1:::; t:::; 1.

It follows that

fn(X):::; M,,+, fl (1-t2)"-1/2hn(t)dt.
2n fi(n + 1) r(n + 1/2) -1

On using (2.5) with k = nand

L
I

t(l-t2)n-'/2dt=O,

we have

Ir,,(x)1 :::; 2"+~~+; 1)! (I T,,+ I(X) + T,,(x)1 + ITn+ I(X) - T,,(x)l)

= M,,+ I max{ IT,,(x)l, IT,,+ l(x)l}
2"(n + I)!

and thus

(2.13 )
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Note that we must have strict inequality in (2.11) and (2.13) if the
maximum in (2.12) is attained only at x = 1 and/or x = -1.

Since Ilrl1 ll cannot be less than the error for minimax approximation and
this latter error satisfies (1.1), we must have

I"n l1 + I

Ilr l1 ll:? 211 (n + l)!' (2.14 )

where m l1 + 1 = min 1 ";x"; 11/(11+ 1)(x)l. We must also have strict inequality
in (2.14) if the minimum is attained only at x = 1 and/or x = -l.

Combining (2.13) and (2.14), it follows from the continuity of/(I1+ 1) that
(2.6) holds.

3. EQUIOSCILLATION ON THE EXTREMA OF Til + I

Let IJ} = cos(jn/(n + I)), j = 0, ..., n + 1 denote the n + 2 extrema of Til + 1

on [-1,1]. [t has been shown [6J that if p is chosen so that /- p
equioscillates on the point set H = {lJo, ... , 1Jn+ I} then (1.1) is satisfied. We
present an alternative proof based on the method of Section 2. In this case

11
p(x) = L' Ck Tk(x),

k~O

where

(L" denotes summation with the first and last terms halved.)
We first note that

(3.1 )

(3.2)

n+1

fJ/:= n (lJi-IJ;)=((n+1)/2(Il 11)(-1)/
i~O

i#j

=((n+ 1)/2 11 )(-1)/

This is proved by defining

j=O, n + I,

j= 1,2,... , n.

(3.3 )

._l1n+ I _ )_ (x 2 _1) U I1 (x)
q(x) .- (x lJi - 211 '

;=0

where U I1 E ~, is the Chebyshev polynomial of the second kind and observ
ing that fJ i = q'(IJ), j = 0,..., n + I.
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We now have analogous to Lemma 2.1,

LEMMA 3.1. Cn' Cn + 1 defined by (3.2) satisfy

55

(3.4 )Cn= ;n (1'['10" 'IJn] +/['11" 'IJn+ I]),

1 1
CI/+ 1= 2"- 1/['10" 'IJn+ I] = 2n (/['10" ''111] -/['11" ''111+ I]). (3.5)

Proof Use symmetric expansion of the divided differences and (3.3)
noting that '10 = -'111+ l = 1.

Note that we also have expressions for Cn and Cn + 1 similar to (2.4).

THEOREM 3.1. If / E C(II + I) [ - 1, 1] and p E 2I'n is chosen so that f - p
equioscillates on the point set H = {lJo ... '1 n+ d then (1.1) holds.

Proof (Analogous to that of Theorem 2.1.) Substitute (3.2) in (3.1)
and interchange the order of the summations to obtain

(3.6)

Again for the functionf = 1 we must have p = 1. On using the Christoffel
Darboux formula and (2.8) we have

where

2 11+1

fk(U) =--1 In .f'((lJj-X) u+x) Tk(IJJ, k=n, n+ 1.
n + j~O

On applying Lemma 3.1 with f replaced by Fu( t) = .f'(( t - x) u + x) we
deduce that

Now
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where (E (-1,1), with a similar result for Fu[l]o" '1],,]. Hence

If(x) - p(x)l:::; 2"+~:+; 1)! (IT,,+ I(X) + Tn(x)i + IT,,+ I(X) - T,,(x)I),

where M n + I = II fI" + 1) II. The rest of the proof is identical to the latter part
of that of Theorem 2.1.

4. ECONOMISED INTERPOLAnON ON THE ZEROS OF T" + 2

The method of Sections 2 and 3 can be used to prove that (l.l) holds
when p is the interpolating polynomial constructed on the zeros of Tn + I .

This is of little interest as the usual proof based on the error of inter
polation is shorter. However, in [6], it is observed that the polynomial of
Section 3 may be obtained by economising the interpolating polynomial (in
~ + I) constructed on the n + 2 extrema of Tn + I' We can also prove that
(l.l) holds if p is obtained by economising the interpolating polynomial of
degree n + 1 constructed on the n + 2 zeros of T" + 2' In this latter case

"
p(x) = I' ctTk(x),

k~O

where

and xj=cos((2j-l)n/(2n+4)), j=I, ... ,n+2 are the zeros of T"+2' In
place of Lemma (3.1) we have

1
cf~=2nU[x]'''X''+I]+f[X2'''X''+2])' (4.1)

I 1
c~+ 1= 2nf[xl ... X,,+2] =-2n+] U[x l '" x n+ 1] - f[x2'" Xn+2])·

XI

(4.2)

The proof that (l.l) holds is then similar to that of Theorems 2.1 and 3.1.
(We also note 2x I > 1.)

All these approximations are special cases of truncating the finite
Chebyshev series on point sets consisting of either the zeros or the extrema
of T n +] (or T n + 2 ). Work is continuing] on extending the proof to

1 Note added in prool Since submission of this paper a general proof for these cases has
been published (H. BRASS, Error estimates for least squares approximation by polynomials,
J. Approx. Theory 41 (1984), 345-349).
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polynomials obtained by truncating the finite series after r+ 1 terms for
r~n-1. Suitable formulae for Cr to replace (3.4) and (3.5) when r<n (or,
for c:, to replace (4.1) and (4.2) when r < n) are being sought.
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